Chromosomal instability and its relationship to other end points of genomic instability.

نویسندگان

  • C L Limoli
  • M I Kaplan
  • J Corcoran
  • M Meyers
  • D A Boothman
  • W F Morgan
چکیده

Chromosomal destabilization is one end point of the more general phenomenon of genomic instability. We previously established that chromosomal instability can manifest in clones derived from single progenitor cells several generations after X-irradiation. To understand the potential relationship between chromosomal destabilization and the other end points of genomic instability, we generated a series of chromosomally stable and unstable clones by exposure to X-rays. All clones were derived from the human-hamster hybrid line GM10115, which contains a single copy of human chromosome 4 in a background of 20-24 hamster chromosomes. These clones were then subjected to a series of assays to determine whether chromosomal instability is associated with a general "mutator phenotype" and whether it modulates other end points of genomic instability. Thus, we analyzed clones for sister chromatid exchange, delayed reproductive cell death, delayed mutation, mismatch repair, and delayed gene amplification. Statistical analyses performed on each group of chromosomally stable and unstable clones indicated that, although individual clones within each group were significantly different from unirradiated clones for many of the end points, there was no significant correlation between chromosomal instability and sister chromatid exchange, delayed mutation, and mismatch repair. Delayed gene amplification was found to be marginally correlated to chromosomal instability (P < 0.1), and delayed reproductive cell death (the persistent reduction in plating efficiency after irradiation) was found to be significantly correlated (P < 0.05). These correlations may be explained by chromosomal destabilization, which can mediate gene amplification and can result in cellular lethality. These data implicate multiple molecular and genetic pathways leading to different manifestations of genomic instability in GM10115 cells surviving exposure to DNA-damaging agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromosomal Instability and Its Relationship to Other End Points of Genomic Instability1

Chromosomal destabilization is one end point of the more general phenomenon of genomic instability. We previously established that chro mosomal instability can manifest in clones derived from single progenitor cells several generations after X-irradiation. To understand the potential relationship between chromosomal destabilization and the other end points of genomic instability, we generated a...

متن کامل

I-37: Genome Instability and DNA Damage in Male Somatic and Germ Cells Expressed as Chromosomal Microdeletion and Aneuploidy Is A Major Cause of Male Infertility

Background: Sperm chromatin insufficiencies leading to low sperm count and quality, infertility and transmission of chromosomal microdeletion and aneuploidies to next generations can be due to exposure to environmental pollutions, chemicals and natural or manmade ionizing radiation. In this project which has continued for more than 10 years and is unique in many technical aspects in Iran and in...

متن کامل

Radiation Induced Bystander Effect

Introduction: Radiation effects observed in cells that are not irradiated are known as non-targeted effects.  Radiation induced bystander effect (RIBE) as a kind of non-targeted effect has been introduced in recent  years.  RIBE  occurs  in  unexposed  cells  which  are  related  to  adjacent  or  distant  irradiated  cells.  RIBE  contradict with "target theory" which necessitates radiation tr...

متن کامل

Impaired cohesion and homologous recombination during replicative aging in budding yeast

The causal relationship between genomic instability and replicative aging is unclear. We reveal here that genomic instability at the budding yeast ribosomal DNA (rDNA) locus increases during aging, potentially due to the reduced cohesion that we uncovered during aging caused by the reduced abundance of multiple cohesin subunits, promoting increased global chromosomal instability. In agreement, ...

متن کامل

The DNA resection protein CtIP promotes mammary tumorigenesis

Many DNA repair factors act to suppress tumor formation by preserving genomic stability. Similarly, the CtIP protein, which interacts with the BRCA1 tumor suppressor, is also thought to have tumor suppression activity. Through its role in DNA end resection, CtIP facilitates DNA double-strand break (DSB) repair by homologous recombination (DSBR-HR) and microhomology-mediated end joining (MMEJ). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 57 24  شماره 

صفحات  -

تاریخ انتشار 1997